CyberTran International Inc.

Kirkland, WA | Saturday, February 8, 2013

The Automobile-Dependent Society

- Air Pollution
- Global Warming
- Traffic Congestion
- Imported Oil
- Foreign Wars

Conventional Rail as a Solution?

- □Large
- **□** Slow
- **□** Expensive

The CyberTran Solution

- Quantum reduction in capital cost
- > Reduced operations cost
- An interconnected network

Developed at the Idaho National Laboratory

System Engineering Goals:

- Reduced Cost
- Improved Service
- Increased Safety

TYPICAL COST BREAKDOWN FOR PASSENGER RAIL

Vehicles, Design, Power, etc. 25%

Route Infastructure 75%

INL Engineers Analyzed Passenger Rail Systems

Key Finding:

 High capital cost of rail systems is caused by heavy vehicles

Conclusion:

 Optimum vehicle size is 6-30 passengers

Optimal Vehicle Design

- 6 to 30 Passengers per Vehicle
- Lightweight 10,000 Pounds
- Proven Materials and Technologies
- Steel Wheel on Steel Rail
- Electrically Powered Solar ready
- Computer Controlled

Light Vehicles Lead to Inexpensive Guideway

Easy and fast to install

No ground clearing

Components prefabricated offsite

Grade separated for safety

Many Light Vehicles Allow Off Line Stations

On-demand service

Increased capacity

Direct-to-destination travel

Networkable lines

The Transportation Internet is Born...

Development Status

Previous Development

- Built test vehicle and test track, 60 mph
- Built 2nd test vehicle and tested in curves
- Built test track and innovative switch and tested
- Tested multiple drivetrain configurations
- Built 10% grade track and successfully demonstrated
- Built three ¼ scale vehicles and tested

Previous studies and analyses:

- Morrison-Knudsen concluded 10-50% of cost of conventional
- Parsons-Brinkerhoff verified guideway cost estimates
- Applied Engineering Services verified cost estimates
- HNTB verified seismic resilience of guideway
- BART estimated ¼ the cost of BART, ½ the operating cost

Development Status (2)

Simulations

- Vehicle simulated up to 160 mph, American Association of Railroads
- Structure simulated for earthquakes, PGH Wong Engineering
- Performance simulated at airport, Kimley-Horn

Current development

- Advanced Control system
- Full Scale Integration and Test
- Solar-powered Transit Micro Grid
- Rapid ULRT Test Track
- PPP Pilot Project
- Foreign Markets

Proposed UC Berkeley-LBNL Demonstration and Test Track

